

\square	ADDITION
Stage 1	

- Children will be introduced to the vocabulary of addition and the + symbol
- Lots of practical work, informal jottings, whole-part models and counting on fingers will be used to help children understand that addition is the combination of 2 or more sets of objects.

Stage 2

- The children will use a range of filled number lines to help them add small numbers together.
- They will learn to partition numbers into tens and units and then recombine them.

Counting on using a number line	Eg What is 5 more than 8 ? -1 $_{-1} 8+5=13$ $8+7=15$
Counting on using a number line and putting the biggest number first. Also counting on by putting the biggest number in your head.	$\operatorname{Eg} 3+5=8$
Counting on using a number line including bridging through 10	$\operatorname{Eg} 7+8=15$
Partition and recombine	Eg Partition... $53=50+3$ or recombine $. . .50+3=53$ Partitioning into tens andones.

Stage 3

- Children will consolidate partitioning.
- They will add a multiple of $\mathbf{1 0}$ to a number
- A range of practical apparatus (eg. place value cards, Dienes apparatus, place value counters) will be used to complete TU + TU. They partition the number into tens and ones before adding the numbers together, finding the total.

Adding a multiple of 10 to a number.	$\text { E.g. } 23+10=20+10=30+3=33$ Or $23+20=43$
Partitioning smaller numbers into tens and units	Eg $53+32=85$ Or $12+13=12+10+3$ $50+3+30+2=85$ $=22+3$ $=25$ (Also done through jottings) \longrightarrow Eg 50 $30=80$ $\begin{array}{r} 3+2=5 \\ 80+5=85 \end{array}$
Adding the multiples of 10 first, then the units	

	13		12	y	ting 5 25	

Stage 4

- Children will use partitioning to add two, 2-digit numbers together that cross the tens boundary.
- Practical methods will lead to more formal written methods.
- Then larger numbers will be used (3 digit +3 digit and 4 digit +4 digit)

Using practical apparatus and /or a number line to help,	
Partitioning, but using a more formal written method.	$25+47$ Numbers are written beside each other $20+40=60$ but adding the tens first, then the units. $5+7=12$ $60+12=72$
Partitioning with numbers written underneath each other	$\begin{gathered} 52=50+2 \\ +62=60+2 \\ \hline 110+4=114 \end{gathered} \quad \begin{array}{r} 25=20+5 \\ +47=40+7 \\ 60+12 \end{array}$
Then adding larger numbers by partitioning.	two 3-digit numbers two 4-digit numbers Eg $145+236$ eg $2364+1423$

| $145=100+40+5$ | or | $2364=2000+300+60+4$ |
| :--- | ---: | :--- | :--- |
| $+\frac{236=200+30+6}{300+70+11=381}$ | | $1423=1000+400+20+3$
 $3000+700+80+7=3787$ |

Stage 5

- Supported by practical equipment, children will begin to use the formal long written method.
- Once confident, practical equipment will be taken away.
- Children will then work with larger numbers and decimal numbers.

Working with larger numbers	123	435	20.3
and decimals,	+345	+356	$+\underline{+82.4}$
adding the units	8	11	0.7
digit first	60	80	2.0
	400	700	100.0
	468	791	102.7

Stage 6

- Supported by practical equipment, children will begin to use the formal short written method, initially with and then without carrying digits.
- Once confident, practical equipment will be taken away.
- Children will extend the method to work with progressively larger whole numbers and decimal numbers. They will learn that decimal points should line up under each other.

- Children will be introduced to the vocabulary of subtraction and the symbol.
- Lots of practical work, informal jottings (eg rubbing out / crossing out) and counting back on fingers will be used to help children understand subtraction as the process of taking away.
- Children will also be taught to find the diffference between two numbers.

Practical counting activities	Vocabulary to include : How many are left? 5 take away 1 One less than 5
Finding the difference	बODOODOOO 000000 Which line has most money? How moch more?
Jottings. Getting a set of objects and taking some away.	$8-5=3$ $\pm \Delta \Perp \Delta \triangle \Delta \Delta \Delta$
Stage 2	

Children will use a filled number line to help them count backwards and forwards in small steps.

Stage 3

- Children will count backwards in larger steps
- They will find the difference by counting on.

Using a number-
line to count
back in larger
steps.

Finding the difference by counting on.

Stage 4

- Alongside the number line method, children will use practical apparatus to take away the smaller number from the larger number and model exchanging.

Practical apparatus and drawings are used to model exchanging	Eg 72-47 = 25
Take away the 4 tens first	
Then exchange a ten for 10 ones	

Stage 5

- \quad Supported by practical equipment (place value counters and Dienes' apparatus) , children will begin to use the formal short written column method, initially without and then with exchanging.
- Once confident, practical equipment will be taken away.

As children first experience short subtraction written methods, practical apparatus is used to support them and they record the written column method alongside.

Exchanging takes places by swapping a ten for 10 ones.

Stage 6

- Finally children use the compact column subtraction method as the most efficient form.
- The children will learn how to use the method for subtraction of TU - TU numbers and HTU - HTU numbers
- They will subtract the most significant digit first (units column).
- Once children are confident with HTU - HTU, this should be extended to THTU - THTU.

Short written column method initially without and then with exchanging.

Units digits are subtracted first

Eg. $76-24=52 \quad$ (without exchanging)

$$
76
$$

$$
-\frac{52}{24}
$$

Eg. $563-246=317$
(with exchanging)

	$\begin{array}{r} 51 \\ 563 \\ 246 \\ \hline 317 \end{array}$
Extend the method to numbers with any number of digits and decimal places.	$\begin{array}{r} 4151 \\ 567.8 \\ -478.5 \\ \hline 89.3 \\ \hline \end{array}$ Line decimal points up underneath each other.
	MULTIPLICATION

Stage 1

- Lots of practical work and counting of sets of objects will take place.
- Pictorial representations will be used to show groups of objects.
- Children will learn that multiplication is a way of grouping.
- They will be taught how to multiply by using repeated addition.
- Children will begin to be introduced to the vocabulary of multiplication.

Pictorial representations	How many fingers on 2 hands? How many sides on 3 triangles? How many legs on four ducks? contexts
Counting in repeated groups	How many socks are there?

Making the link with repeated addition.
Grouping / lots of $/ 2$

Stage 4

- Children will look at the relationship between division and multiplication.
- They will be introduced to the idea of multiplication as the inverse of division.
- Multiplication cards will be sent home weekly with children from Year 2 onwards

| Multiplication is
 the inverse of
 division | Eg $15 \div 5=3$ and $3 \times 5=15$ |
| :--- | :--- | :--- | :--- |

[^0]$15 \div 3=5$

Stage 5

- The link between arrays and the multiplication is made clear to children by the use of place value apparatus such as place value counters and Dienes.
- Multiplication will take place through partitioning.
- This is the children's first exposure to the distributive law of multiplication and children should be given plenty of opportunity to explore this .

Using practical apparatus to show the distributive law of multiplication	Multiply by tens and ones and add
The distributive law definition	The distributive law means that a number is partitioned and then each part of that number is multiplied, before the answers are added back together to form a final total. Eg In the sum 13×4 the number 13 is partitioned into Tens and Units. So 13 becomes 10 and 3 . Each part of this number is then multiplied by 4. $\begin{aligned} & 4 \times 13 \\ & 4 \times 10=40 \\ & 4 \times 3=+\frac{12}{52} \\ & \text { Total } \end{aligned}$

Multiplication
through partitioning

The tens column is multiplied first

Without, then with carrying digits over when adding the total.

Without carrying digits over for the total.
4×14
$4 \times 10=40$
$4 \times 4=+16$

With carrying digits over for the total.
16×7
$6 \times 7=42$
$10 \times 7=+\quad 70$

$$
=\frac{112}{1}
$$

Stage 6

- Children will be introduced to the expanded short multiplication column method, which still uses partitioning.

Steps in the

 expanded short multiplication methodThe first step is to represent this method of recording in a column format, but still showing the working down the side.

Children should be expected to multiply the units first which enables them to move more easily towards the compact method later on.

Children will describe what they do by referring to the actual values of the digits in the columns. For example, the second step in the sum below (35×4) is 'thirty multiplied by four', not 'three times four', although the relationship 3×4 should be stressed. (eg If

	we know that $3 \times 4=12$ then we also know that $30 \times 4=$ 120)
Expanded short multiplication method TH x U Use with increasingly larger numbers. HTU x U THTU x U	
	Stage 7 will then move onto using the compact short written d for multiplication. cording is reduced further, with the carried digits recorded the line.
Short Written method TU x U Then use increasingly larger numbers HTU x U THTU x U And with different contexts such as money	$\begin{array}{rrr} 35 & 78 & 345 \\ \times \quad 4 \\ \hline 140 & \times \quad 9 \\ \hline 2 & \frac{702}{7} & \frac{7}{2,415} \\ \hline 33 \end{array}$ $\begin{array}{r} £ 3.55 \times 9=£ 3.55 \\ \frac{x 9}{£ 31.95} \\ \frac{44}{4 .} \end{array}$

Stage 8

- As children's confidence with the method grows, they will use larger whole numbers, decimals and in a range of contexts eg money.
- \quad The long multiplication method will be used to multiply 2 digit numbers.
- The method will be used with a wide range of contexts (eg money)

Decimal multiplication X 1dp X 2dp X mixed decimals	-By counting how decimal place $\text { eg- } 23.5 \times 56.4$ $235 \times 564=132540$ -By x and \div by 10/10c Eg 6.04×7 Work out 604 x $\begin{array}{r} 604 \\ \times \quad 7 \\ \frac{4228}{2} \end{array} \longrightarrow \text { ther }$	numbers appear after the $23.5 \times 56.4=1325.40$ ead (this number is $\times 100$ bigger) de the total by 100 to reach the er $=42.28$
Key Mult YR: counting in Y1: $x 2,10$ Y2: $x 2, x 5, x 10$ Y3: $x 2, x 3, x 4$, Y4 All x and \div Y5 and Y6: All Because the expectation at home. All Pupils are end of Year 4 The Multiplic Department	lication Facts 8, x10 up to 12×12 and \div facts up to 12×12 onal Curriculum for parents will help th ected to know their n Tables Check (MTC) ducation (DfE) in Sep	decimal x and \div facts. hs is so extensive, there is an hildren learn their times tables tables facts up to 12×12 by the s officially announced by the ber 2017. It will be administered

for children in Year 4, starting in the 2019-20 academic year. More information onn this can be found at this link:
 https://www.theschoolrun.com/new-primary-school-times-tables-testsexplained
 DIVISION

 Stage 1

- Children are encouraged, through practical experiences, to develop physical and mental images of sharing things out equally.

Practical activities in real

 life contextsEg. Practically sharing food out between people

Old Bear's tea party

Division as grouping	Eg. Divide 50 coins into groups of 10 . There are 10 coins in each group. 50 divided into groups of 10 , equals 5 $\text { So } 50 \div 10=5$ Or 5 groups with 10 in each group, equals 50 So, there are 5 groups of 10 in 50. Or There are 3 in each group so $6 \div 3=2$
Division as repeated addition	How many 2 s are there in 10 ? $\underset{2}{\bigcirc \bigcirc} \bigcirc_{+2}^{\bigcirc} \underset{+2}{\bigcirc} \bigcirc_{+2}^{\bigcirc} \quad \bigcirc_{+2}^{\bigcirc}=10$

- Children will be exposed to different forms of division questions

Division with remainders through repeated addition and 'How many left over?’	Eg. $17 \div 5=3$ r 2 $14 \div 3=4 r 2$
Inverse relationship with multiplication (both with and without remainders)	Eg. (including remainders) What is $17 \div 5$? Use 17. What is the closest you can get to 15 in $5 x$ table $=15$ (3 lots of 5). And how many left over? $=2$ So $17 \div 5=3 \mathrm{r} 2$
Types of questioning used	When discussing division, ask: 'How many threes are in 15?' as well as: 'What is 15 divided by 3 ?' to help children relate division to its inverse multiplication

Stage 5

- Division on an empty number line will be used with larger numbers

Division will be taught as counting on an empty number line

$$
\text { E. } 9365 \div 15=
$$

Write the jump size labels on the empty number line as you make the jumps

This number line method explained:

The first jump is 10 lots of $15=150$
The second jump is 10 lots of $15(=150)=300$
The third jump is 2 lots of $15(=30)=330$
The forth jump is 2 lots of $15(=30)=360$
The last jump is 5 left over $=365$

So 24 lots of 15 r 5

Final answer is: $\mathbf{3 6 5} \div \mathbf{1 5 = 2 4 r} 5$

- Once children have developed a sound understanding of division, they can move onto the 'formal written method'

of short division.

- The short division method is used both with and without remainders.
- Until the summer term of Year 6 (for calculations where numbers with up to 4 digits are divided by a single digit number and also 4 digits divided by a 2 digit number) children are expected to use short division methods.

$\begin{aligned} & \mathrm{HTU} \div \mathrm{TU} \\ & \text { THTU } \div \text { TU } \end{aligned}$	
Use the method in different reallife contexts such as with money or measures	Eg. $£ 7.84 \div 7=$ $\begin{array}{r} £ 1.1 \quad 2 \\ 7 \begin{array}{l} £ 7.814 \end{array}, ~ \end{array}$ Final answer is: $£ 1.12$ Eg. $3.92 \mathrm{~kg} \div 7=$ $\begin{gathered} 0.56 \\ 7 \longdiv { 3 . 3 9 4 2 } \end{gathered}$ Final answer is: 0.56 kg
	Stage 7

Short division written method and converting remainders to fractions	Eg $256 \div 5=$ $5 \longdiv { 2 2 5 6 }$ Final answer is : $\quad 256 \div 5=51^{1 / 5}$
Short division written method and converting remainders to decimals	Eg $256 \div 5=$ 51.2 $5 \longdiv { 2 2 5 6 . 1 0 }$ Final answer is: $256 \div 5=51.2$ Note: The fraction $1 / 5$ in the previous answer is the same as (or equivalent to) the decimal answer 0.2 Eg $247 \div 8=$ $\begin{array}{r} 30.875 \\ 8 \longdiv { 2 4 7 . 7 0 6 4 0 } \end{array}$ Final answer is: $247 \div 8=30.875$ Eg $8007 \div 34=$
	Stage 8

- In the summer term of Year 6, children will be familiarised with the vertical long division written method for calculations of up to 4 digits divided by a $\mathbf{2}$ digit number.
- Children will be encouraged to use their knowledge of times tables and multiples to speed this method up and will make jottings down the side before they begin the calculation.
- Remainders will also be written as fractions and decimals.
- The long division written method will be practised in a range of real-life contexts, such as with money and measures.

Vertical Method
 (Chunking)

Eg $364 m \div 13=$
$\begin{array}{r}28 \\ \begin{array}{r}2364 \\ 3 \\ -26\end{array} \\ \hline 104\end{array}$

Down the side, of the page, pupils use jottings to count on in multiples of the divisor
eg.

$$
\begin{aligned}
13 & =x 1 \text { lot } \\
26 & =x 2 \text { lots } \\
52 & =x 4 \text { lots } \\
104 & =x 8 \text { lots } \\
130 & =x 10 \text { lots }
\end{aligned}
$$

Ratified by Governing Body:

[^0]: $15 \div 5=3$

